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TABLE III . The second column lists the predicted counting rates 
for production of submuons for a time in which four counts were 
actually observed. Column 3 lists the half-lives necessary to reduce 
the predicted rates to the observed rate of 4 counts. The total 
amount of absorber in the telescope was 179.0 g cm-2 of lead. The 
ranges listed for 175, 150, and 100 me particles were calculated 
from Barkas.11 The other ranges were taken from the dashed curve 
of Fig. 3. 

Submuon 
mass 
(me) 

175 
150 
100 
50 
25 

175 
150 
100 
50 
25 

Predicted number 
of counts/1017 

incident electrons 

(a) Spin-§ 
70 

1200 
3980 
8410 

12 500 

Half-life of 
submuons to 
give 4 counts 

(10~10 sec) 

submuons: 
22 
9.4 
5.2 
2.3 
1.1 

(b) Spin-0 submuons: 
10 

190 
660 

1690 
2870 

68 
14 
7.0 
3.0 
1.4 

Predicted 
range in lead 

(g cm"2) 

170.7 
182.2 
204.0 
227 
236 

170.7 
182.2 
204.0 
227 
236 

CONCLUSIONS 

The results of this experiment rule out any but very-

short-lived singly charged particles in the mass range 

5—175 tne. This result, plus the theoretical results 

on the vacuum polarization described in the introduc

tion make it unlikely that charged particles with rest 

mass between that of the electron and muon exist. 
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The range of the chain-of-pions interaction is calculated for very high-energy nucleon-nucleon collisions in 
an approximation which does not require a complete dynamical description of the process. It is assumed that 
the chain-of-pions interaction is a primary process whose amplitude is not derived from that for "low-energy" 
processes. The interaction is described by two parameters, the average minimum-momentum transfer A0 

and the average fireball mass mo. Certain results can be expressed in terms of Ao and mo alone and are 
generally valid for all "linked-peripheral'' models. In particular, if Ao and mo are constant, then the in
elasticity is constant, the number of fireballs is proportional to In (s/M2), where s112 is the total barycentric 
energy, and the multiplicity is also proportional to In (s/M2). The chain-of-pions interaction in which the 
nucleons remain unexcited, N-N final states, is expected to be the most important process for small Ao 
because of the considerably larger phase space available for it compared to that for isobar production. Thus, 
N-N final states give rise to the longest range part of the interaction and are estimated to make a larger 
contribution to the cross section than states in which even the f-f pion-nucleon isobar is produced. An addi
tional result is that the iterated dominant "low-energy" pion-exchange model gives a nucleon-nucleon cross 
section of at most several mb if only low values of the momentum transfer of one of the nucleons or isobars 
are allowed. With the approximations used, it is then possible to calculate the long-range part of the elastic 
diffraction scattering amplitude in the almost transparent, purely absorbing, optical approximation. We 
obtain the Regge behavior in the limit of a large number of fireballs. At incident nucleon laboratory energy 
EL = 10W, the amplitude has not yet reached the asymptotic limit. For A0

2=5w7r
2 and m0=2M, one finds 

that the inelasticity is J, the number of "fireballs" is two, and the range is in close agreement with that 
given by the one-pole elastic Regge amplitude witho:/=l/7kf2. Finally, it is found that the nucleons which 
emerge unexcited in the final state lie within a cone whose angular width decreases with energy at a rate 
such that the transverse momentum PT also decreases and PT^ (lns)~1/2. This behavior is correlated to the 
shrinking of the elastic diffraction peak but is apparently in disagreement with high-energy events. 

I. INTRODUCTION 

IN many high-energy nucleon-nucleon collisions it is 
observed that the final-state particles have very 

small transverse momenta and that the secondary 
particles, mainly pions, appear to be produced in one 

* Supported in part by a grant from the National Science 
Foundation. 

or more groups called "fireballs."1,2 I t seems reasonable 
1 P. Ciok, S. Coghen, J. Gierula, R. Holynski, A. Jurak, M. 

Miesowicz, T. Saniewska, O. Stanisz, and J. Pernegr, Nuovo 
Cimento 8, 166 (1958); and 10, 741 (1958); G. Cocconi, Phys. 
Rev. I l l , 1699 (1958); and K. Niu, Nuovo Cimento 10, 994 
(1958). 

2 A recent review of the data is given by D. H. Perkins, in 
Proceedings of the International Conference on Theoretical Aspects 
of Very High-Energy Phenomena (CERN, Geneva, 1961), p. 99. 
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to assume that some "peripheral" mechanism links the 
groups that are produced and provides a damping 
factor in the momentum transferred between them. 
One possibility, for example, is that each link consists 
of an exchanged virtual pion, leading to a chain-of-pions 
process and the damping factor is the pion propagator 
or "pole."3 There are other suggestions as to the nature 
of the links4*5 but the over-all kinematical picture is 
the same. 

Goebel6 first emphasized that the single-pion-exchange 
interaction can be expected to yield a range of inter
action greater than m-f1 which is usually associated 
with the exchange of a particle of mass mr. The in
creased range arises from the chain-of-pions interaction 
contained in the model at higher energies. His conclu
sion appears to be of a more general nature. Any 
"linked-peripheral" process can be expected to give rise 
to a range of interaction greater than that given by any 
one of its components. 

The effect of the increased range in the chain-of-pions 
interaction is born out in the work of Amati et alJ 
They examine a model in which it is assumed that the 
chain-of-pions interaction is a dominant process and 
that it can be related to a dominant "low-energy" 
single-pion-exchange interaction through an iterative 
procedure. With this model they find that the elastic 
diffraction scattering amplitude is of the Regge type. 
As has been frequently discussed,8 the Regge behavior 
of the elastic-scattering amplitude, along with the 
reasonable assumptions that the nucleon-nucleon total 
cross section is constant at very high energies and that 
the interaction is purely absorbtive, imply that the 
range and transparency of the nucleon-nucleon inter
actions are increasing slowly with energy. The rates of 
increase are such that the total cross section remains 
constant. 

I t has been conjectured that the Regge behavior of 
the elastic diffraction amplitude continues to very high 
energies.8 Starting from this conjecture, we find that 
the "linked-peripheral" production process represents 
one of the simplest mechanisms which can account for 
the increased range of the interaction and which is 
consistent with the data available at present. The spin 

^ E. L. Feinberg, in Ninth Annual International Conference on 
High-Energy Physics, Kiev, 1959 (Academy of Science, U.S.S.R., 
1960); F. Salzman and G. Salzman, Phys. Rev. 120, 599 (1960). 

4 S. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys. Rev. 
126, 2204 (1962); and A. P. Contegouris, S. C. Frautschi, and 
H. Wong, ibid. 129, 974 (1963). 

5 S. C. Frautschi, Nuovo Cimento 28, 409 (1963). 
6 C. Goebel, in Proceedings of the Midwest Theoretical Conference 

(1961); and in Proceedings of the International Conference on 
Theoretical Aspects of Very High-Energy Phenomena (CERN, 
Geneva, 1961), p. 353. 

7 D. Amati, S. Fubini, A. Stanghellini, and M. Tonin, Nuovo 
Cimento 22, 569 (1961); and D. Amati, S. Fubini, and A. Stang
hellini, Phys. Letters 1, 29 (1962). 

8V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 41, 667 (1961) 
[translation: Soviet Phys.—JETP 14, 478 (1962)]; C. Lovelace, 
Nuovo Cimento 25, 730 (1962); G. F. Chew and S. Frautschi, 
Phys. Rev. Letters 7, 394 (1961); and 8, 41 (1962); and R. 
Blankenbecler and M. L. Goldberger, Phys. Rev. 126, 766 (1962). 

of the particles can be assumed to make a negligible 
contribution. Experimentally2 the number of particles 
produced is proportional to s1/4, where s1/2 is the total 
energy in the barycentric system, and the particles are 
mainly pions (spin zero). The elastic diffraction data 
indicate that important interactions occur in states of 
angular momentum a(slns)1/2.9 Therefore, the actual 
spin of the particles makes a vanishingly small contri
bution to the total angular momentum of the system 
and cannot be the source of the increase in the range 
of interaction. 

I t is of interest to see whether the "linked-peripheral" 
production of particles can produce an interaction 
range which is consistent with that obtained from the 
vacuum Regge pole fit of the elastic N-N scattering 
data at the accelerator energies. The range of the 
interaction is sensitive to the details of the links and 
it is calculated here in first approximation for the 
chain-of-pions graph. From the point of view of field 
theory or "polology" this process is expected to give 
the longest range interaction because the pion has the 
lightest mass of the strongly interacting particles. 
However, the methods used here are based upon 
kinematic approximations which are generally valid for 
"linked-peripheral" models. 

The iterated-dominant "low-energy" pion-exchange 
model appears to be too great a simplification of the 
nucleon-nucleon interaction to be used to obtain a 
reliable estimate of its range. The assumption that the 
one-pion-exchange process is dominant at every stage 
of the iterative procedure can lead to a large accumu
lated error. We know now that links other than ex
changed virtual pions are of interest4,5 and that there 
is also the possibility of a significant number of events 
without a fireball structure.2 A calculation based upon 
the iterated dominant "low-energy" pion-exchange 
model is made in Sec. V which shows that if only low 
values of the square of the four momentum transfer of 
one of the nucleons or isobars are allowed, then this 
model gives a nucleon-nucleon cross section of at most 
several mb. 

Even if the chain-of-pions interaction (or more 
generally any "linked-peripheral" mechanism) is not 
the dominant process, it may still make a dominant 
contribution to the longest range part of the nucleon-
nucleon interaction. I t is also possible that the chain-
of-pions interaction at high energies cannot be related 
to "low-energy" interactions through iterations because, 
for example, the interference effects may vary with 
energy. Therefore, we treat the chain of pions as a 
primary interaction. As the amplitudes are no longer 
tied to low-energy processes and the dynamical details 
of the vertices are not known, we introduce two 
parameters, the average minimum-momentum transfer 
A0 and the average fireball mass mo. This is sufficient 

9 B . M. Udgaonkar and M. Gell-Mann, Phys. Rev. Letters 8, 
346 (1962). 
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FIG. 1. A general "linked-peripheral" graph for the production 
of n fireballs. Nucleons N and N' are incident with four-momenta 
p and p', respectively. Two nucleons or isobars emerge, N or TV*, 
with four-momenta P and P ' , and n fireballs with four-momenta Qi, 
i=l, - —,n. Each group is linked to the next by some peripheral 
mechanism which restricts the momentum transfer to small values. 
The momentum transfer for the ith link is indicated by A;2. The 
groups included in the brackets marked P» and P / form the 
supergroups for the ith link, and A;2= — (p—Pi)2. 

with certain other approximations to determine the 
interaction range. 

In Sees. II , I I I , and IV we obtain general kinematical 
results for "linked-peripheral" interactions such as the 
inelasticity and the number of fireballs, which can be 
expressed in terms of the parameters A0 and mo alone. 
Certain of these results are also given by Frautschi5 

for the model which he has suggested, but there are 
some important differences in the approximations used. 
In particular, we are interested in small A0 and in the 
case that the nucleons are unexcited. 

In Sec. V we determine which chain-of-pions graph 
is probably most important. 

In Sec. VI the range is calculated in a first approxi
mation in which it is assumed that the fireballs have a 
small fraction of the total energy in the barycentric 
system and that the vertex interactions do not have 
important spin or angular dependence. With this 
approximation it is possible to obtain the long-range 
part of the elastic diffraction scattering amplitude in 
the almost transparent purely absorbing optical approx
imation. We find the Regge behavior for the elastic 
scattering amplitude in the limit of a large number of 
fireballs. 

II. NOTATION AND KINEMATICS 

Nucleons N and N' are incident with four-momenta 
p and p', p2 = p'2 = M2, where M is the nucleon mass 
and units with fi^=c=l are used. Two nucleons or 
nucleon isobars come off in the final state with four-
momenta P and P', where P2 = Mf

2, P'2 = M/2, and 
Mf and M/ are the masses of the "isobars." There are 
n fireballs produced with momenta Qi and masses m^ 
Qi for i = l , 2, n. The total momentum of 
the fireballs is given by Q—J2 Qi and the total mass 
is m, Q2 — m2. 

In a "linked-peripheral" production model, it is 

assumed that the momentum transfer associated with 
each link is small. This has the effect that the momen
tum of each of the "bodies" in the final state makes a 
small angle with the collision axis in the barycentric 
system. We assign each of the final state groups a 
position in a chain diagram, as shown in Fig. 1, accord
ing to the magnitude and sign of its three momentum 
in the barycentric system. The positive direction is 
chosen to be that of the projectile nucleon p, in the 
laboratory system. 

The total barycentric energy s1/2 is defined by 

s=(p+py. (2.1) 

The momentum transfer variable for the ith link, A7;
2, 

is given by 

tf=-(p-Pi)2, where Pi = P+T,Qj. (2-2) 

We also define 

P/=P'+ZQJ- (2.3) 

In this notation P\ = P and Pn+i=Pf. The groups 
composing Pi and P{ are called the supergroups of the 
ith link. The mass of each supergroup st

xl2 is given by 
< H J~ % . 

The components of four-vectors in the barycentric 
system (B) are labeled with subscripts B and are given 
by: P=(EB,T?B), Qi=(WiB,QiB)^ Q=(WB,QB), Pi 

= (siB,J*%B) and similarly for the primed variables. The 
magnitudes of the three vectors are designated by 
\PB\=PB, I Q%BI = Qui, etc. 

For each supergroup Pi we define a scattering angle 
6i by the equation 

PB • YiB = PBP%B cosdi. 

Equation (2.2) can be written as 

(A,2)= ( A , 2 ) m i n + 2 ^ P ^ ( l - c o s ^ ) , (2.4) 

where (A;2)min is a function of M2, s^ s/, and s. 
In general, if particles of mass mi and m2 are incident 

with four momenta pi and p2 and two groups with 
mass si and 2̂ emerge with four momenta P i and P2 , 
as shown in Fig. 2, and A2= —(pr~Pi)2, then the 
equation for the phase space boundary is given by10 

(si-mi
2)(s2-m2

2) 

+ (l/s)(sim2
2—s2m1

2)(si—mi
2— (s2—m2

2)) 

Si-{-s2-\-mi2+m2
2+A2 

= A2S! [-
+ 

{m^—m^)(si—s^)' 
(2.5) 

10 F. Salzman and G. Salzman, Phys. Rev. 125, 1703 (1962). 
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m« <&-

FIG. 2. A general "two-center peripheral" process. Particles mi 
and w2 are incident with four-momenta pi and p2, respectively, 
and two groups of particles emerge, Si and s2, with four-momenta 
Pi and P2 . The momentum transfer A2 is given by A2= — (pi — P\)2 

and the energy variable s= (pi-\-p2)
2. 

where s= (pi~\-p2)
2. This equation gives the minimum 

value of A2 for given s, mi2, m2
2, si, s2 or alternatively, 

the maximum value of Si or s2 for fixed values of the 
other parameters. 

Equation (2.5) can be put into a more convenient 
form for our purposes by solving it in terms of the 
expression Si~ Wi2+A2. I t then becomes 

Si-~-Wi2+A2~ ( s 2 -~m 2
2 +A 2 ) 

2m2
2 

Wi2+W2
5 

+ i 
2{m{2-{-m2

2) (wi2-w2
2)2 , 

+ 

X I 
(s2

2-m2
2+A2)2 

A useful approximation of Eq. (2.6) is 

/s2—m2
2+A2' 

(si—Wi2+A2)= {s—m^~m2
2)[ • 

• ( 

1/2 

1/2 

(2.6) 

X • 1 + 1 + 

2m2
2 

4w2
2A2 1/2 

(s2~m2
2+A2)2J 

for m^-\-m2
2<s/\. (2.7) 

We now let mi2 = m2
2=M2. Equation (2.7) has two 

limiting cases of interest: 
(1) s2—M2 (one nucleon emerges unexcited) 

A / A \ 
Si-M2+A2 = s~ 1 J, 

M\ 2M/ 

for 4M2/K<1 and A2/4Jkf2<<l; and 

(2) «?i, s2>M2 (excitation at each vertex) 

sA2 

(2.8) 

s i-AfH-A2 = -
s2-M

2+&2 

for 4M 2 /K<1, and 
4M2A2 1 

< _ f 

(s2-M
2+A2)2~2 

(2.9) 

As can be seen the approximate boundary equation for 
case (1) cannot be obtained from that for case (2) in 
the limit s2 —> M2. 

In order to make a comparison between (1) and (2), 
we let s2 in Eq. (2.9) be equal to Mz/2

2, the mass of 
the f-f pion-nucleon resonance and the minimum 
isobar mass of interest. For small A/M, Eqs. (2.8) 
and (2.9) become 

(i) 

and 

(2) 

si-M2 = sA/M, 

s1-M
2=lAs(A/M)2, s2=Md/2

2 

(2.10) 

Thus, there can be considerably larger values of Sx for 
given A for (1), in which the nucleon emerges unexcited, 
than that for (2), in which just the lowest isobar is 
excited. Alternatively, for given s and si, the minimum 
values of A for the two cases, Ai and A2, are considerably 
different and Ai<<CA2. This is due to the fact that the 
smallest values of (A2)min occur for the least excitation 
at the two vertices. 

III. APPROXIMATIONS AND INELASTICITY 

The independent variables that are usually used to 
describe a process of the type shown in Fig. 1 are the 
two sets: (1) the energies of the supergroups {si}, and 
(2) the momentum transfers {A;2}. However, we 
assume that the quantities (Ai2)min defined in Eq. (2.4) 
are equal to some average value A0

2, 

(A;2)min=A0
2 for t = l , 2 - - - , » + l , 

and that the mass of each fireball is equal to some 
average mass mo2, 

w/=Wo2 for i=l,2- • -,n. 

Since the values of (Ai2)min are fixed, we have in fact 
fixed the values of the set {si}. The energies Si can be 
obtained by repeated application of the boundary 
equation given in Eq. (2.6) for specified Mf, M/, s, 
A0

2, and w0
2. 

I t is also assumed that the total energy carried off 
by the fireballs in the barycentric system, WB, is small 
compared to s1/2 and that the momentum of each 
fireball is small compared to that of the nucleon 
"isobars." If we define the inelasticity / as 

I=WB/sl'\ 

then experimentally2 many events are observed with 

For given final nucleon states, the inelasticity of a 
process is a function of A0 alone. To see this, we note 
that 

/ = l - ( E B + £ 2 / ) / ^ / a , 

where En and Eg are the barycentric energies of the 
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nucleon isobars P and P\ respectively, and are given by 

SU2 

EB = —l 1 

and 

v—r-y 
j> '7 sn+1-M/\ 

(3.1) 

In order to find the energies s± and sn+h it is helpful to 
look at the graph of Fig. 3 which shows in greater 
detail the parts of Fig. 1 which are of interest. The 
energies si and sn+i can be obtained by breaking the 
graph at the first and last link, respectively, comparing 
it with the general two-group graph of Fig. 2, and then 
making the proper substitutions in the general equation 
for the boundary given in Eq. (2.7). Because of the 
large difference in the phase space depending on 
whether nucleons N or isobars N* are emitted, we 
examine the following three special cases: (1) final 
states in which both nucleons emerge unexcited, called 
N-N final states; (2) final states in which a nucleon 
and one isobar emerge, N-N* final states; and (3) 
states in which two isobars emerge, N*-N* final states. 

(1) N-N Final States 

The energy si can be obtained from the approxi
mation given in Eq. (2.8) by making the substitutions 
si —»si and A —» A0. Substituting this expression for 
si into Eq. (3.1), we find 

EB = -
2 

Ao/ A o \ \ 
1 1 ) ) , for (Sl'-M

2)»A<?. (3.2) 
M\ 2M/J 

I t follows from the symmetry of the phase space, i.e., 
(A,-2)min= Ao2 and Mf=M/ = M, that EB

f = EB. There
fore, the total energy of the fireballs in the barycentric 
system is given by 

Ao/ Ao \ 
WB = s1'2-2EB = s1^—[ 1 J . (3.3) 

M\ 2MJ 

In order to find the total mass of the fireball system 
m, we see that the si part of the graph of Fig. 3 itself 
can be related to the general graph of Fig. 2 by the 
following substitutions: 

A2- >M2: 
and si-^m2. 

Making these substitutions in the approximation for 
the boundary given by Eq. (2.8), we find 

Ao/ Ao \ 
w2+2A0

2= (5 l
,~M2+Ao2)— 1 ) , (3.4) 

M\ 2MJ 

provided | A0
2-AT2| <*i ' /4 , (A0

2+M2)2<O/2 , and A0
2 

<$C4M2. The expression for s\ c a n be obtained as before 

FIG. 3. The same 
process as shown in Fig. 
1; however, the n fire
balls are here treated as 
one group with four-
momentum Q and rest 
mass m, m2 = Q2. 

from Eq. (2.8) with the substitutions Si—> si and 
A—> A0. When this result is substituted into Eq. (3.4), 
one finds 

w2+2Ao2 = s [ ~ M 1--00 
A 0 \ 2 

2M/ ' 
(3.5) 

For A0
2<3Cw2, we see by comparing Eqs. (3.3) and (3.5) 

that WB
2~?n2. Thus, for this symmetrical case, the 

total mass of the fireballs is at rest in the barycentric 
system. 

(2) N-AT* Final States 

Using a procedure analogous to that used in the 
previous case, we find 

Ao/ A o \ / M / 2 - M 2 + A o 2 

m2+2A0
2 = s— 1 )(• 

M\ 2M/\ 

X - 1 + 1+ 

2M2 

4M2A0
2 . l / 2 - i 

(lf/2-M2+A0
2)2> 

(3.6) 

To find WBy we note that the energy EB is given in 
Eq. (3.2) and the energy EB can be obtained by 
substituting Eq. (2.7) (with s2=Mf2) for Si into Eq. 
(3.1). We then find for EB' 

cl/2 

EB'~-
(M/ 2 -M 2 +A 0

2 ) 

2M2 

4ikf2A0
2 

(M/ 2 -M 2 +A 0
2 ) 2 )""])• (3.7) 

where we have assumed s^>M2, A2 and s{5>Mf
2. This 

gives for WB = s^2- (EB+EB
f), 

^ 2 ( A 0 / A 0 \ / 
WB = — - 1 ) + ( • 

2 \M\ 2MJ \ 

Mf
2-M2+A0 

2M2 

X 1 + 1 
(M/~M2+A o2)V J 

(3.8) 

For the nonsymmetrical case, Mf=£M/, we find that 
WB^=m and the total fireball mass is not at rest in the 
barycentric system. 
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(3) iV*-iV* Final States 

We shall assume that Mf=M/, so that we again 
have a symmetric case. Then EB = EB and is given by 
Eq. (3.7). We find for WB, 

WB = sl>2-
{Mf

2 -M2+A0
2) 

FIG. 4. The group 
of n fireballs of Figs. 
1 and 3 shown in 
greater detail. 

rmn-.' 

2M2 

X - 1 + 1 -
4M2A0

2 

(M/ 2 -M 2 +A 0
2 ) 2 )'"] (3.9) 

We obtain for the fireball mass m, 

'Mf
2-M2+Ai\2 

m2+2A0
2 = s 

X 

2M2 

• i+d-
4M2A0

2 

(M/2 -Af2+A, 
)l /2-

(3.10) 

and for A0
2<3Cm2 we find again that WB = nt. 

The inelasticity, I=WB/S1/2 can be obtained for the 
three cases directly from Eqs. (3.3), (3.8), and (3.9), 
and is seen to depend only upon A0 and the masses of 
the isobar states involved. Thus, if A0 is constant with 
energy, then I is constant also. 

In Table I we list the value of I for the three cases 

M/, A0
2, and mi. To do this, the pertinent part of the 

graph of Fig. 3, consisting of the n fireballs that are 
emitted and the two links by which they are connected 
to the nucleon "isobar" lines, is shown enlarged in 
Fig. 4. We see that we can reduce this graph to that of 
the general two-group system considered in Sec. II 
with the following identifications: The end links corre
spond to incident "particles" of mass—A0

2; the bary-
centric energy is set equal to m; and the fireballs are 
divided into two groups, the lower group consisting of 
only the ^th fireball with mass w0, and the upper group 
of the remaining n—\ fireballs with a total mass mn~i. 
The numbering, which is unimportant, is the same as 
that given in Fig. 1. If we now compare Fig. 4 with the 
general graph shown in Fig. 2, we see that the approxi
mate general boundary equation given in Eq. (2.7) can 
be used with the following substitutions: 

Process 
(final states) 

N-N 
N-Nz/2 
Nz/2—Nzi2 

TABLE I. Inelasticity 

A0
2 = M2/9 

0.28 
0.20 
0.12 

I 
A<? = M2 

0.50 
0.48 
0.46 

wi2, mi -

S2~ 

-> — A0
2; s —> m2; A2 —* A0

2 

- Wo2; and s± —» mn^i. 

The resulting equation for mn 

mn-i
2+2A 

considered with N* = Nz/2y the §-§ pion-nucleon isobar P r o v ided 

- ( 

-2An2 

?»o2+2Ao5 
(4.1) 

and for two values of A0
2, A0

2 = M2 /9 and M2. For 
A0

2=ikf2/9, 7=0.28 for N-N final states and drops to 
0.12 for Nz/2-Nd/2 final states. For A0

2=if2, 7 - 0 . 5 for 
all three cases. I t is interesting to note that it is possible 
to have inelasticities well in the physical range with 
values of A0

2<3C&f2 if the two nucleons emerge unexcited. 
Small A0

2 does not imply small A;2. I t is still necessary 
to know the angular dependence of the supergroups in 
order to estimate the average value of A/. Of course, 
small A0

2 allows for the possibility of small A4-
2. In any 

case, we see that the condition that I be small places 
a restriction on the parameter A0 which for values 
AQ2<KM2 depends strongly upon whether the nucleon 
is excited or unexcited. 

IV. NUMBER OF FIREBALLS 

In order to calculate the range of a "linked-periph-
eral" interaction it is necessary to know the number, n, 
of fireballs emitted as a function of the variables s, Mfj 

4A0
2<m2/2 and 

2A0
2 1 

< _ 
Wo2+2Ao2^2 

If the number of fireballs is two, n=2, then the 
system mn-\ consists of one fireball. In Eq. (4.1) we 
set mn-.i

2=mo2 and m2=m2
2, where m2 is the rest energy 

of the system of two fireballs, and find for m2
2, 

m2
2+2AQ

2= (wo2+2A0
2)2/Ao2. (4.2) 

If n=3, the system mn-i consists of two fireballs and 
in Eq. (4.1) we set mn-i

2~m2
2 and m2=m2. Substituting 

Eq. (4.2) for tn2
2 into Eq. (4.1), we find for mi 

W32+2A0
2= (wo2+2Ao2)3/(Ao2)2. (4.3) 

Equation (4.3) is easily generalized to the case of n 
fireballs. If we set m? = mn

2, the rest energy of the 
system of n fireballs, we find 

(wn
2+2A0

2)= (W+2Ao 2 )V (Ao2)*- (4.4) 
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(a) (b) 

FIG. 5. Graphs for N—N collisions in the single-pion-exchange 
model. The graphs differ only in that in (a) a nucleon N emerges 
from the lower vertex and in (b) the f-f pion-nucleon isobar, 
N3/2, emerges. 

Solving Eq. (4.4) for n, we obtain 

m[(m2+2A0
2)/A0

2] 
n = , 

ln[(m0
2+2Ao2)/Ao2] 

where the subscript n on mn has been dropped. The 
final step is to relate m2 to s. The relevant formula for 
N-N final states is given by Eq. (3.5), for N-N* by 
Eq. (3.6) and for N*-A7* by Eq. (3.10). For the case 
of interest, N-N final states, we have 

ln [ (VM 2 ) ( l -Ao /2M) 2 ] 

ln[(w0
2+2Ao2)/Ao2] 

(4.5) 

In all three cases, we find that if Wo and A0 are constant 
with energy then n oz\n{$/M2). 

V. DOMINANT CHAIN-OF-PIONS INTERACTION 

We now consider specifically the "linked-peripheral" 
interaction consisting of a chain-of-pions. The part of 
the phase space given by the smallest values of A/ for 
each link is expected to give rise to the longest range 
part of the interaction and to be the one in which the 
chain-of-pions graph is most likely the dominant 
process. In Sec. I l l it is shown that it is possible to 
obtain physically interesting values of the inelasticity 
for small A0

2, A0
2<<CM2, if the nucleons emerge unexcited 

in the final state. However, the vertex interaction for 
isobar excitation, in particular that for the formation 
of the A^/2 state, is stronger than the TT-N-N vertex. 
I t is, therefore, a priori possible that ^3/2 final states 
make a considerably larger contribution to the cross 
section and are of greater importance in determining 
the range of the interaction than the unexcited nucleon 
states. 

In this section, we estimate the relative importance 
of final states in which N or A"3/2 emerge by evaluating 
the cross section for both graphs of Fig. 5 in the single-
pion-exchange approximation. The two graphs of Fig. 5 
differ only in that in (a) an N emerges and in (b) an 
A^/2 emerges from the lower vertex. The upper vertex 
is taken to be the total w-N interaction. The notation 
is as follows: nucleons N and Nf are incident with 
four-momenta p and p'; the group of particles which 
emerges from the upper vertex has four-momentum Pi 

and rest energy Si112, where Si — Px2; and the N or Af3/2 
emerges with four-momentum P2 , where P^—M2 or S2, 
respectively. Of course, the four-vectors have different 
components in the two cases because of the different 
masses. 

The cross section for the diagram of Fig. 5(a) in 
which a nucleon N emerges and a pion of charge r is 
exchanged, daN

T/dA2
y is given in the pole approximation 

by the Chew and Low formula11 

daNr 4wfT
2M2 A2 

dA2 (2TT)2 p2s (A2+mw
2)2mT

2 

X / pSlSl<TT< V o t ( * i ) ^ i 1 / 2 ) , (5.1) 

where 

P=N 
1 for 7T° exchange 

I 2 for exchange 

pSl is the magnitude of the initial momentum for pion-
nucleon scattering at the barycentric energy s ^ 2 and 
is given by 

(ps
2+M2y2^ (s1+M2~mT

2)/(2s1"
2), (5.2) 

and (TVTNtot{si) is the total TT-N cross section at 
energy s±. The upper limit (^i)max of the integral for 
given A2 is given by Eq. (2.8) and can be approximated 
by 

(Ji)max= (sA/M)(l-A/2M), (5.3) 

for (si)ma*^>>M2, A2. For sufficiently large s, the major 
contribution to the integral comes from large si and 
we assume 

crTrJV
tot(^i) = ^ i v t o t , 

where ov^*01 is an average constant pion-nucleon cross 
section. For large s and si we can also take p — sll2/2 
and pSl = s1

1/2/2. Making the indicated approximations, 
summing over the two-pion charge state (one neutral 
and one charged), and doing the sx integration with the 
use of Eq. (5.3) for the upper limit, we obtain 

3/2 

2TT 

(A2)n •^AA(\-A/2M)2d(A2) 

(A2+mT
2)2 mv

2 
(5.4) 

where (A2)max is a cutoff needed to limit the A2 inte
gration to small values. The approximation for the 
upper limit of the Si integration, Eq. (5.3), is valid for 
(A2)m a x<M2 . 

The cross section for the diagram of Fig. 5 (b) is given 
by the formula for single-pion exchange in the two-
center model in which the lower vertex group, P2, is 
restricted to the Nz/2 state. For the exchange of a pion 
of charge r, the cross section becomes, in the pole 

11 G. F. Chew and F. E. Low, Phys. Rev. 113, 1640 (1959). 
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approximation,10 

d(TNZl2T 1 

dA2 4Tnph (&2+fnv
2) - m 2 ) 2 J 

d(Slll2)p8lSl(Tirr^N
tot(s1) 

X J d(s2
l/2)p^2cr^r^N>(s2), (5.5) 

where c „.->_#•'($ 2) is the cross section for a pion of 
charge — r incident upon nucleon TV' at the barycentric 
energy s2

112, and s2
112 is restricted to lie in the energy 

range of the §-§ pion-nucleon resonance, 7.7mT<s2
l/2 

<9Amr. In order to simplify the integral we make an 
isobar approximation for the TVs/2 vertex by setting 

» - 3 / 2 - d(s2^)pS2s2a^(s2) (5.6) 
7.7mv 

where am is the cross section for the / = f , T=% pion-
nucleon state. We then set P2

2=M3 /22= 1.72M2 in Eq. 
(2.7) for the upper limit of the si integration. Summing 
over the three-charge states of the virtual pion, making 
the high-energy approximations used in the previous 
case, and doing the si integration, we obtain 

4?r3 

A8 

4M4 

(A2)„ 

dA2--
(0.72M2+A2)2 

(A2+wT
2)2 

X - 1 + ( , 
4M2A2 

(0.72TkP+A2)2> 
, (5.7) 

where we have assumed s^>M2 and sC$>M2, A2. We 
have neglected the contribution to the A2 integral from 
the lower s± limit. 

For fixed (A2)max both the TV and TV3/2 cross sections 
in the pole approximation are constant in the high-
energy limit. Direct evaluation of A3/2 with (TZ,2(S2) 
taken to be the total w+-p cross section yields A3/2 

= 21.2M2. Using / 2 =0 .08 and taking (A2) raax«0.72M2, 
we find from Eqs. (5.5) and (5.7) that aNsl2^(l/5)aN. 
The small value of <rNzj2 compared to aN is due to the 
fact that the phase space for 2V3/2 final states is con
siderably less than that for TV because of the difference 
in mass. Evaluating <TN and aNsl2 for two values of 
(A2)max, i.e., (A2)max=10wT

2 and 20m/, we find the 
results shown in Table II . We see that the total cross 
section for TV final states is larger than that for TV3/2 

for both values of (A2)max. 

T A B L E I I . 

(A2)m a x 

lOfWTT2 

20m7r2 

Cross sections for the 

(a) 

0.16(nrNtot 

0.33a-TN
tot 

graphs of Fig, 5. 

(b) 
CTNz/2 

0.025(T7r^tot 

0.045(T7r^tot 

I t should be pointed out that because the equation 
for the phase space is so sensitive to the mass, the 
isobar approximation used in evaluating (rNsl2 is not too 
reliable and the values obtained should be viewed only 
as estimates. In addition, the pole approximation for 
<73/2 (s2) neglects the important dependence on A2 arising 
from the absorbtion of the virtual />-state meson and, 
thus, A3/2 and <TN3!2 are underestimated. However, the 
result which we are primarily interested in is that 
TV-final states can be expected to compete favorably 
with the TV3/2 states. 

We have in effect evaluated the iterated dominant 
chain-of-pions model of Amati et al., in the pole approxi
mation. In their model, the upper ir-N "vertex" of 
each graph in Fig. 5, which we have treated phenome-
nologically, consists entirely of chain-of-pions inter
actions. By taking the total w-N cross section to be 
— 20 mb for the upper vertex, we are calculating an 
upper bound to the cross section coming from all 
chain-of-pion graphs in which an TV or an TV3/2 is 
emitted at the lower vertex as shown in Fig. 5. We 
find the upper bound is ~ 4 mb for momentum transfers 
at the TV and iV3/2 vertices < 10m v

2. If the ir-N inter
action is not predominantly chain-of-pions interactions, 
then the actual contribution from chain-of-pions graphs 
to the TV-TV cross section is considerably less. 

In the model of Amati et al.y graphs in which an TV 
or TV3/2 are emitted at a given vertex should give 
practically the whole TV-TV inelastic cross section which 
at very high energies is estimated to be —40 mb. This 
result can be shown in the following manner. One 
considers in addition all graphs in which the higher 
nucleon isobars are emitted from the fixed vertex. By 
a direct evaluation, the same as that done for the AT 

and TV3/2 cases, it can be shown that these graphs are 
unimportant.12 If now the excitation energy at the 
fixed vertex increases further, then one comes to the 
energies at which the 7T-TV interaction is presumably 
dominated by the one-pion-exchange process and these 
graphs are already included in those for the TV and 
TV3/2 cases. 

The cross section for the chain-of-pions graphs 
obtained in the iterated approximation is very small. 
As mentioned in the Introduction we are adopting the 
point of view that the chain of pions is not a dominant 
process except in the longest range part of the inter
action. In addition, we are considering it as a primary 
interaction which may not be simply related to lower 
energy interactions. 

12 F. Salzman (unpublished). One can proceed in this way and 
include a "core" part of the TT-N interaction at the lower vertex, 
which can be "peripheral" but not reducible to a single-pion-
exchange interaction. This, then, ^ covers all the "peripheral" 
interaction in which at least one link is given by a single-pion-
exchange process and avoids the overcounting problem contained 
in the two-center model approach. One rinds that there must be 
a substantial contribution from the "core" part of the interaction 
if the single-pion-exchange "two-center" model is to explain a 
dominant part of the very high-energy N-N cross section. 
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VI. RANGE OF CHAXN-OF-PIONS INTERACTION 

To obtain the range of the chain-of-pions interaction 
we refer again to the graph of Fig. 1 in which now all 
the links are assumed to be virtually exchanged pions. 
We take (A;2)min=A0

2 for i=l, 2 , " - - - , n+l and Q? 
= mo2 for i— 1, 2, • • •, n. As we have seen, for given s, 
A0

2, and m0
2 the supergroup energies Si and s/ are fixed. 

The remaining independent variables are A;2. Each A;2 

can be expressed in terms of Ao2 and the angle of the 
vector P»- with respect to p in the rest system of the 
vector P*+i for i=l, 2, •••, n+l, where the vector 
P n + 2 is given by Pn+2= P + Q + P' = P + p ' . However, for 
the limiting case QiB^Pn, the barycentric system (B) is 
particularly simple to use. 

The inelastic amplitude, / c i n , is proportional to the 
product P of the n+1 pion propagators 

n+l 1 
(6.1) 

w»2+A,-2 

where all the spin dependence is neglected. Substituting 
for A,2 the expression given in Eq. (2.4), we obtain 

n+l 

where 

P= I I l / ( 2 ^ P « ) ( l / ( l + V - c o s ^ ) ) , 

T)?=(mS+W)/(pBPiB), ,2) 

and we have set (A/)min=^A0
2. Equation (6.2) is 

rewritten as 

P = ^ e x p - E l n ( 1 4 :,„(, 1 — cosfl, 

l-yj.2 
2r7« where (6.3) 

A = (ll )exp{-ZanW/2)}. 
\ i 2pBPiB/ 

We now assume that Q ^ ^ P ^ and QB<^T*B SO that 

and 

P ; s = P i ?+X Qys~ P# , 

(6.4) 

For small 6i, the expression 1 — cosdi in the exponent 
of Eq. (6.3) is ~ 0 / / 2 and can be related to the trans
verse momentum of the ith supergroup, given by 
PiB sindi^Pisdi. If we let <pj be the angle between QjB 

and PB and 6N the angle between YB and pB, then the 
transverse momentum of each supergroup for small 6N 
and <p3- is given by 

n—1 

PiBBi^PBdN+YsQjBVj, 

where the transverse momentum of the nucleon is 
PB6N and that of the jth fireball is QJB<PJ. For Q3B<PJ 

sufficiently small, the transverse momentum of each 
supergroup can be approximated by that due to the 
nucleon, 

PiB0i~PB®N-

This approximation is not inconsistent with the experi
mental observation that the secondary pions have an 
average transverse momentum ^0.4-0.5 BeV/c.2 The 
transverse momenta of the fireball particles can be all 
due to their own relative motion in the fireball rest 
system and the total transverse momentum of each 
fireball itself is negligible in the barycentric system 
(B). Finally, we also make the approximation 

Inserting these approximations into Eq. (6.3), we obtain 

fc
inozP 

= A e x p { - M - l ) l n [ l + ( l - c o s ^ ) / ( ^ / 2 ) ] } . (6.5) 

If the vertex interactions do not depend significantly 
on the variables A/ for A;2 small, then the main angular 
dependence of the amplitude fcin for small ON is given 
by Eq. (6.5). The range is closely related to the expo
nential fallofl of the amplitude. For n+l>3, the 
magnitude of the exponent will be < 1 for (1 —COS0JV)/ 
(v2/^)Sl/(n+l). Since this is the range of values of 
interest, we expand the logarithm and obtain 

/ e i n c c ^ e x p { - [ 2 ( # + l ) A 2 ] ( l ~ c o s ^ ) } . (6.6) 

The amplitude fcin depends only on the nucleon 
variable in the approximation that the fireballs have 
small total and negligible transverse momenta in the 
barycentric system. The problem then corresponds 
formally to that of a "two-body" inelastic state. If the 
Regge behavior of the elastic amplitude continues to 
very high energies and the total cross section remains 
constant, then the nucleon-nucleon interaction can be 
treated in the almost transparent purely absorbing 
optical approximation. In this approximation, if the 
amplitude for a dominant "two-body" inelastic channel 
is given by that of Eq. (6.6), then the elastic diffraction 
amplitude, fcG\ which is required by the unitarity 
relation, is13 

/ c e l ocexp[- ((n+1)A2) (1 - cosfl)], (6.7) 

where 6 is the elastic scattering angle in the barycentric 
system. 

The N-N elastic amplitude in the dominant vacuum 
Regge pole hypothesis is given by 

fR
el ocexp[- (2pB

2a ln*/Jo)( l -cos0)] , (6.8) 

where s0~2M2 , the trajectory a(t) has been approxi
mated by a(t)~l+ta and t= — 2pB

2(l — cosd) for 
elastic scattering. A fit of this expression to the N-N 
elastic data in the 3-30-BeV incident-nucleon labora
tory energy range gives a ' ~ 1/M2. 

13 F. Salzman (to be published). 
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If ny>iy and Ao and w0 do not vary significantly 
with energy, then r]~2<xpB

2 and noc]n(s/M2). In this 
case, the elastic diffraction scattering amplitude, fc

el, 
obtained from the chain-of-pions process is of the 
Regge form given by Eq. (6.8) in the limit of large n. 

The amplitudes of Eqs. (6.7) and (6.8) are of the form 

/ccexp[—#( l -cos0) ] . 

The range R which corresponds to this amplitude is 
given by18 

R={28yiypB. 

Using this expression, we find the range RR of the 
amplitude fR

el of Eq. (6.8) to be 

RR= {2/M)[\n{s/2M2)J'2, (6.9) 

where we have taken af=l/M2, and the range Re of 
the amplitude fc

el of Eq. (6.7) to be 

r 2 ( ^ + l ) [ l - ( A o / M ) ( l - A 0 / 2 M ) ] ] 1 / 2 

I (w, 2+A 0
2 ) J 

where (6.10) 
l n [ ( V M 2 ) ( l - A 0 / 2 i f ) 2 ] 

n=- . 
ln[(m0

2+2Ao2)/(Ao2)] 

In obtaining (6.10) we have substituted for rj2 the 
expression given in Eq. (6.4) and we have set PB 
= PB£1—(AO/M)(1 — AQ/2M)"] which is obtained from 
Eq. (3.2) for sll2y>M. 

A comparison of Re and RR can be made for given 
values of s, A0

2, and m0
2. The quantity A0

2 is not known 
experimentally; but, with Ao2=5mT

2, we see from 
Table I that for N-N final states the inelasticity 
7=0 .3 which is within the range of values observed 
experimentally. This value of I is somewhat high in 
terms of the approximations used which are satisfied 
for 7<<Cl. Nevertheless, since all the data are lumped 
together, it is more interesting a t this time to see what 
results one obtains with a value of I that is representa
tive of a large number of the reported events. The 
incident-nucleon laboratory energy EL is taken to be 
>10ZM so that it is reasonable to use the almost 
transparent, purely absorbing, optical approximation 
for the nucleon-nucleon interaction. 

In Table I I I , Rc and RR are compared for EL— 10 W , 
A0

2=5w7r
2, and for three values of m0

2: nto2=mp
2 

— 2/3M2, where mp is the mass of the p meson (the 

TABLE III. Ranges Rc and RR. The chain-of-pions 
range Rc is calculated with AO2=5WTT2. 

£L=10W n,s/M*?>l 
m0

2 n Rc RR = 5.3/M Rc 

2/SM2 3^7 6.7/M = (2.2/M) lnCs/M2)1 '2 

2M2 2.5 5.S/M (1.8/M)ln(s/M*yt* 
4M2 2.1 5.5/ilf (1.6/M)\n(s/M*yi* 
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lowest mass of interest), 21f2, and 4M2-. Also shown, 
are the number, n, of fireballs produced as given by 
Eq. (4.5). Experimentally, at 22i,« 10W, the average 
fireball mass is « 2M and the average number produced 
is ~ 2 . In all three cases the range Rc is larger than RR. 
For the fireball mass Wo2=4Af2, we find n~2 and also 
the best fit to RR. 

The number of fireballs in all three cases considered 
in Table I I I is small which means that at this energy 
the corresponding elastic amplitudes have not yet 
reached the asymptotic K'egge form. For this reason 
we include in Table I I I the asymptotic expression for 
the range obtained in the limit s/M2, riS>\. The best 
limiting value in comparison to the expression for RR 
given in Eq. (6.9) is that for an average fireball mass 
m0=M. Of course, all three values given in Table I I I 
are fairly close and the slope of the vacuum trajectory 
a! is subject to a fair amount of uncertainty, so that it 
is perhaps not worthwhile making a detailed quantita
tive comparison. However, it appears most reasonable 
to conclude that the two ranges are compatible. 

Finally, it is of interest to consider the transverse 
momentum PT of the nucleons as given in this picture. 
[[The transverse momenta of the fireballs cannot be 
calculated because they have been taken to be negligibly 
small.] From the inelastic amplitude of Eq. (6.6) we 
see that the important values of B'N are given by 

eN<n/(n+\yi2, 
so that 

P r « P ^ < [ ( l - A o / M ) ( w . 2 + A o 2 ) / ( ^ + l ) ] 1 / 2 , (6.11) 

where we have substituted for v\ the expression given 
in Eq. (6.4) and we have used the approximation that 
PB = PB(1~A0/M). For A0

2=5mT
2 and n=2 we find 

P r < 0 . 1 6 B e V A , 

The nucleon transverse momentum is much smaller 
than the average, which is ~ 0 . 4 BeV/c. Experimentally, 
there is evidence that the heavy particles have trans
verse momenta ^ 1-2 BeV/c. 

Equation (6.11) shows that the transverse momen
tum PT of the nucleon goes to zero as (l/n)1/2 or 
[]xi(s/M2)~]~112 for large n and s. If this is also true for 
each fireball, then the approximations leading to 
Eq. (6.5) may still be reasonable. 

VIL DISCUSSION AND CONCLUSION 

The results which can be expressed in terms of A0
2 

and Wo2 alone and are generally valid for any "linked-
peripheral" production process are 

(1) The inelasticity depends only on A0
2, and is 

given for N-N, N-N*, and N*-N* final states by 
Eqs. (3.3), (3.8), and (3.9), respectively. 

(2) The number of fireballs depends upon s, A0
2, and 

mo2 and is given for the specific case of N-N final 
states by Eq. (4.5). 
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(3) If A0
2 and m$ are constant with energy, then 

(i) the inelasticity is constant; 
(ii) the number, n, of fireballs increases with energy 

as ln(s/M2); and, 
(iii) the multiplicity is simply proportional to the 

number of fireballs and is also oc \n(s/M2). 

Any "linked-peripheral" mechanism in which the 
nucleons emerge unexcited, with Ao2—5mT

2 and mo2 

= 4M2, which is the most interesting case examined in 
the last section, gives an inelasticity 7=0.3 and the 
number of fireballs n=2 for incident nucleon laboratory 
energy EL—10ZM. Thus, just the assumption of a 
"linked-peripheral" production model leads naturally 
to an explanation of some of the main features of very 
high-energy N-N inelastic events. 

We have shown, in addition, that the chain-of-pions 
interaction with values of the parameters which are in 
agreement with the inelastic data is not inconsistent 
with the Regge vacuum pole hypothesis for high-energy 
elastic scattering. 

It should be pointed out that the approximations 
used may give rise to a large accumulated error because 
the fireball variables are neglected in a sum of terms 
in the exponent of the expression for the amplitude. 
This is offset to some extent by the fact that the 
number, n, of fireballs depends only logarithmically on 
s, A0

2, and nto2. 
We have seen that the inelastic amplitude as given 

by Eq. (6.6) depends exponentially on the nucleon 
variable, /cinccexp{[— 2(n+\)/rf]{l — cos^)} which 
with the approximations made is of the form needed 
to give the Regge-type behavior of the amplitude in the 
elastic channel. However, this predicts that the im
portant values of the angle, ON, at which the unexcited 
nucleon emerges decrease as [s ln(s/-^2)]~1/2 for large 
n and s. This in turn implies that the nucleon transverse 
momentumPT also decreases, PT& [ln(s/^2)]~1/2.14 This 

14 Note added in proof. L. Van Hove has shown in a recent paper 
that if he assumes certain simple forms for the inelastic final states, 
then in order to account for both the conjectured shrinking of the 
p-p elastic diffraction scattering at very high energies and the 
observed constancy of the average transverse momentum of the 
secondaries produced in the inelastic collisions, it is necessary to 
assume a certain amount of correlation between the secondaries. 
A very simple mechanism which Van Hove discusses is apparently 
illustrated by the model considered in this paper. The mechanism 
consists of the secondaries arising from first-generation primaries 
which are uncorrelated but which have an average transverse 

apparently does not agree with the present cosmic-ray 
data. Although the analysis made here does not apply 
to the accelerator energies, it seems reasonable to expect 
qualitatively the same type of behavior at these 
energies if the source of the Regge behavior of the 
elastic amplitude is the same. In any case, it seems 
worthwhile to look for such a correlation between the 
angular dependence of the nucleons produced in the 
most peripheral inelastic events and the angular de
pendence of the elastically scattered nucleons. If, in 
fact, this effect is not present then we may conclude 
that the experimental region lies outside of the range 
of the model considered here. 

Finally, we have not exhausted the chain-of-pions 
possibilities. It is still interesting to examine iV-iV* and 
N*-N* production, particularly if the experiments 
show that larger values of Ao2 are important. If the 
links are exponential factors, as suggested by Frautschi,5 

then the same approximations lead to an inelastic 
amplitude which has an exponential dependence upon 
the nucleon variable. It would be of interest to deter
mine the range for these various possibilities, particu
larly if they are successful in explaining the inelastic 
events. At present, this approach appears to be a simple 
test of whether the dominant vacuum Regge pole 
hypothesis for the elastic N-N scattering interaction 
is in fact compatible with the high-energy inelastic data 
that is now available. 
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momentum which approaches zero at least as fast as i?_1 

[(In (s/M2))~m in the case of the Regge pole conjecture] as 
s112 —•> oo. The explanation of the constant average transverse 
momentum of the secondaries is then the same as that given in 
the above text. 


